martes, 28 de abril de 2009

FUNDAMENTOS DE MONITORES

28 de abril de 2009

MONITORES DE LCD

Una pantalla de cristal líquido o LCD (acrónimo del inglés Liquid Crystal Display) es una pantalla delgada y plana formada por un número de píxeles en color o monocromos colocados delante de una fuente de luz o reflectora. A menudo se utiliza en dispositivos electrónicos de pilas, ya que utiliza cantidades muy pequeñas de energía eléctrica.

Cada píxel de un LCD típicamente consiste de una capa de moléculas alineadas entre dos electrodos transparentes, y dos filtros de polarización, los ejes de transmisión de cada uno están (en la mayoría de los casos) perpendiculares entre sí. Sin cristal líquido entre el filtro polarizante, la luz que pasa por el primer filtro sería bloqueada por el segundo (cruzando) polarizador.

La superficie de los electrodos que están en contacto con los materiales de cristal líquido es tratada a fin de ajustar las moléculas de cristal líquido en una dirección en particular. Este tratamiento normalmente consiste en una fina capa de polímero que es unidireccionalmente frotada utilizando, por ejemplo, un paño. La dirección de la alineación de cristal líquido se define por la dirección de frotación.

clip_image002Antes de la aplicación de un campo eléctrico, la orientación de las moléculas de cristal líquido está determinada por la adaptación a las superficies. En un dispositivo twisted nematic, TN (uno de los dispositivos más comunes entre los de cristal líquido), las direcciones de alineación de la superficie de los dos electrodos son perpendiculares entre sí, y así se organizan las moléculas en una estructura helicoidal, o retorcida. Debido a que el material es de cristal líquido birefringent, la luz que pasa a través de un filtro polarizante se gira por la hélice de cristal líquido que pasa a través de la capa de cristal líquido, lo que le permite pasar por el segundo filtro polarizado. La mitad de la luz incidente es absorbida por el primer filtro polarizante, pero por lo demás todo el montaje es transparente.

Cuando se aplica un voltaje a través de los electrodos, una fuerza de giro orienta las moléculas de cristal líquido paralelas al campo eléctrico, que distorsiona la estructura helicoidal (esto se puede resistir gracias a las fuerzas elásticas desde que las moléculas están limitadas a las superficies). Esto reduce la rotación de la polarización de la luz incidente, y el dispositivo aparece gris. Si la tensión aplicada es lo suficientemente grande, las moléculas de cristal líquido en el centro de la capa son casi completamente desenrolladas y la polarización de la luz incidente no es rotada ya que pasa a través de la capa de cristal líquido. Esta luz será principalmente polarizada perpendicular al segundo filtro, y por eso será bloqueada y el pixel aparecerá negro. Por el control de la tensión aplicada a través de la capa de cristal líquido en cada píxel, la luz se puede permitir pasar a través de distintas cantidades, constituyéndose los diferentes tonos de gris.

El efecto óptico de un dispositivo twisted nematic (TN) en el estado del voltaje es mucho menos dependiente de las variaciones de espesor del dispositivo que en el estado del voltaje de compensación. Debido a esto, estos dispositivos suelen usarse entre polarizadores cruzados de tal manera que parecen brillantes sin tensión (el ojo es mucho más sensible a las variaciones en el estado oscuro que en el brillante). Estos dispositivos también pueden funcionar en paralelo entre polarizadores, en cuyo caso la luz y la oscuridad son estados invertidos. La tensión de compensación en el estado oscuro de esta configuración aparece enrojecida debido a las pequeñas variaciones de espesor en todo el dispositivo. Tanto el material del cristal líquido como el de la capa de alineación contienen compuestos iónicos. Si un campo eléctrico de una determinada polaridad se aplica durante un período prolongado, este material iónico es atraído hacia la superficie y se degrada el rendimiento del dispositivo. Esto se intenta evitar, ya sea mediante la aplicación de una corriente alterna o por inversión de la polaridad del campo eléctrico que está dirigida al dispositivo (la respuesta de la capa de cristal líquido es idéntica, independientemente de la polaridad de los campos aplicados)

Cuando un dispositivo requiere un gran número de píxeles, no es viable conducir cada dispositivo directamente, así cada píxel requiere un número de electrodos independiente. En cambio, la pantalla es multiplexada. En una pantalla multiplexada, los electrodos de la parte lateral de la pantalla se agrupan junto con los cables (normalmente en columnas), y cada grupo tiene su propia fuente de voltaje. Por otro lado, los electrodos también se agrupan (normalmente en filas), en donde cada grupo obtiene una tensión de sumidero. Los grupos se han diseñado de manera que cada píxel tiene una combinación única y dedicada de fuentes y sumideros. Los circuitos electrónicos o el software que los controla, activa los sumideros en secuencia y controla las fuentes de los píxeles de cada sumidero

ESPECIFICACIONES

RESOLUCION

Las dimensiones horizontal y vertical expresada en pixeles, por ejemplo 1024 Px por 768 Px a diferencia de los CRT tienen una resolución nativa mucho mejor.

ANCHO DE PUNTO

El tamaño del punto en los LCD es menor con respecto a los otros sistemas lo cual les permite tener una mayor resolución.

TIEMPO DE RESPUESTA

Es el menor de todos debido a su bajo consumo de energía

TAMAÑO

El tamaño se mide de forma transversal puesto que es coloquialmente llamada el area de visualización activa.

TIPO DE MATRIX

Puede ser activa o pasiva

Breve Historia

1888

Friedrich Reinitzer (1858-1927) descubre el cristalino líquido natural del colesterol extraído de zanahorias (es decir, descubre la existencia de dos puntos de fusión y la generación de colores), y publicó sus conclusiones en una reunión de la Sociedad Química de Viena sobre el 3 de mayo de 1888 (F . Reinitzer: zur Kenntniss de Cholesterins, Monatshefte für Chemie (Wien) 9, 421-441 (1888)).

1960 a 1970

El trabajo pionero en cristales líquidos se realizó en la década de 1960 por el Royal Radar Establishment de Reino Unido en Malvern. El equipo de RRE apoyó la labor en curso por George Gray y su equipo de la Universidad de Hull, quien finalmente descubrió la cyanobiphenyl de los cristales líquidos (que tenía unas propiedades correctas de estabilidad y temperatura para su aplicación en los LCDs).

La primera gran publicación en inglés sobre el tema "Estructura Molecular y Propiedades de los Cristales líquidos", por el Doctor George W. Gray.

Richard Williams de RCA encontró que había algunos cristales líquidos con interesantes características electro-ópticas y se dio cuenta del efecto electro-óptico mediante la generación de patrones de bandas en una fina capa de material de cristal líquido por la aplicación de un voltaje. Este efecto se basa en una inestabilidad hidrodinámica formada, lo que ahora se denomina "domimnios Williams" en el interior del cristal líquido.

En el otoño de 1964 George H. Heilmeier, cuando trabajaba en los laboratorios de la RCA en el efecto descubierto por Williams se dio cuenta de la conmutación de colores inducida por el reajuste de los tintes de dicroico en un homeotropically orientado al cristal líquido. Los problemas prácticos con este nuevo efecto electro-óptico hicieron que Heilmeier siguiera trabajando en los efectos de la dispersión en los cristales líquidos y, por último, la realización de la primera pantalla de cristal líquido de funcionamiento sobre la base de lo que él llamó la dispersión modo dinámico (DSM). La aplicación de un voltaje a un dispositivo DSM cambia inicialmente el cristal líquido transparente en una capa lechosa, turbia y estatal. Los dispositivos DSM podrían operar en modo transmisión y reflexión, pero requieren un considerable flujo de corriente para su funcionamiento.

El 4 de diciembre de 1970, la patente del efecto del campo twisted nematic en cristales líquidos fue presentada por Hoffmann-LaRoche en Suiza (Swiss patente N º 532.261), con Wolfgang Helfrich y Martin Schadt (que trabajaba para el Central Research Laboratories) donde figuran como inventores. Hoffmann-La Roche, entonces con licencia de la invención se la dio a la fabrica suiza Brown, Boveri & Cie, quien producía dispositivos para relojes durante los 1970's y también a la industria electrónica japonesa que pronto produjo el primer reloj de pulsera digital de cuarzo con TN, pantallas LCD y muchos otros productos. James Fergason en Kent State University presentó una patente idéntica en los EE.UU. del 22 de abril de 1971. En 1971 la compañía de Fergason ILIXCO (actualmente LXD Incorporated) produjo los primeros LCDs basados en el efecto TN , que pronto sustituyó a la mala calidad de los tipos DSM debido a las mejoras en los voltajes de operación más bajos y un menor consumo de energía.

EL COLOR EN LOS DISPOSITIVOS

En las pantallas LCD de color cada píxel individual se divide en tres células, o subpíxeles, de color rojo, verde y azul, respectivamente, por el aumento de los filtros (filtros de pigmento, filtros de tinte y filtros de óxido de metal). Cada subpíxel puede controlarse independientemente para producir miles o millones de posibles colores para cada píxel. Los monitores CRT usan la misma estructura de ‘subpíxeles' a través del uso de fósforo, aunque el haz de electrones analógicos empleados en CRTs no dan un número exacto de subpíxeles.

Los componentes de color pueden colocarse en varias formas geométricas de píxeles, en función del uso del monitor. Si el software sabe qué tipo de geometría se está usando en un LCD concreto, ésta puede usarse para aumentar la resolución del monitor a través de la presentación del subpixel. Esta técnica es especialmente útil para texto anti-aliasing.

MATRICES ACTIVAS Y PASIVAS DIRIGIDAS A LCD

Las pantallas LCD con un pequeño número de sectores, tales como los que se utilizan en relojes digitales y calculadoras de bolsillo, tienen contactos eléctricos individuales para cada segmento. Un circuito externo dedicado suministra una carga eléctrica para el control de cada segmento. Esta estructura es difícil de visualizar para algunos dispositivos de visualización.

Las pequeñas pantallas monocromo como las que se encuentran en los organizadores personales, o viejas pantallas de ordenadores portátiles tienen una estructura de matriz pasiva donde emplean tecnologías como la super-twisted nematic (STN) o la de doble capa STN (DSTN) , (DSTN corrige el problema del cambio de color de STN), y la STN de color (CSTN) (una tecnología donde el color se añade usando un filtro de color interno). Cada fila o columna de la pantalla tiene un solo circuito eléctrico. Los pixeles se dirigen a la vez por direcciones de fila y de columna. Este tipo de pantalla se denomina matriz pasiva–dirigida porque el pixel debe conservar su estado entre los períodos de refresco sin beneficiarse de una carga eléctrica constante. A medida que el número de píxeles (y, en consecuencia, columnas y filas) se incrementa, este tipo de pantalla se vuelve menos apropiada. Tiempos de respuesta muy lentos y un contraste bastante pobre son típicos en las matrices pasivas dirigidas a LCDs.

En dispositivos de color de alta resolución como los modernos monitores LCD y televisores utilizan una estructura de matriz activa. Una matriz de thin-film transistors (TFTs) se agrega a la polarización y a los filtros de color. Cada píxel tiene su propio transistor dedicado, que permitirá a cada línea de la columna acceder a un píxel. Cuando una línea de fila está activada, todas las líneas de la columna están conectadas a una fila de píxeles y una correcta tensión de alimentación es impulsada a todas las líneas de la columna. Cuando la línea de fila se desactiva, la siguiente línea de fila es activada. Todas las líneas de la fila se activan secuencialmente durante una operación de actualización. La matriz activa está dirigida a dispositivos con un mayor brillo y tamaño que a los que se dirige la matriz pasiva (dirigida a dispositivos de pequeño tamaño, y, en general, que tienen tiempos de respuesta más pequeños, produciendo imágenes mucho mejores).

clip_image002

NOTA

Es imperativo realizar un proyecto innovador respecto a la complementación de diferentes áreas relacionadas con nuestra carrera.